Features for Learning Local Patterns in Time-Stamped Data
نویسندگان
چکیده
Time-stamped data occur frequently in real-world databases. The goal of analysing time-stamped data is very often to find a small group of objects (customers, machine parts,...) which is important for the business at hand. In contrast, the majority of objects obey well-known rules and is not of interest for the analysis. In terms of a classification task, the small group means that there are very few positive examples and within them, there is some sort of a structure such that the small group differs significantly from the majority. We may consider such a learning task learning a local pattern. Depending on the goal of the data analysis, different aspects of time are relevant, e.g., the particular date, the duration of a certain state, or the number of different states. From the given data, we may generate features that allow us to express the aspect of interest. Here, we investigate the aspect of state change and its representation for learning local patterns in time-stamped data. Besides a simple Boolean representation indicating a change, we use frequency features from information retrieval. We transfer Joachim’s theory for text classification to our task and inestigate its fit to local pattern learning. The approach has been implemented within the MiningMart system and was successfully applied to real-world insurance data.
منابع مشابه
Automatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملAnalyzing the Road Traffic and Accidents with Classification Techniques
Data mining is the process of extracting data’s from the database engines. Now a days the road traffic and accidents are main area for the researchers to discover the new problems behind that. It is commonly used in a marketing, inspection, fraud detection and scientific invention. In data mining, machine learning is mainly focused as research which is automatically learnt to recognize complex ...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کامل